
- Equivalent Full Range Temperature Coefficient 50PPM/°C
- Temperature Compensated For Operation Over Full Rate
 Operating Temperature Range
- Adjustable Output Voltage
- Fast Turn-on Response
- Sink Current Capability 1 mA to 100 mA
- Low (0.27ΩTyp.) Dynamic Output Impedance
- Low Output Noise

DESCRIPTION

The 431-214 is three-terminal adjustable shunt regulator with specified thermal stability. The output voltage may be set to any value between VREF(Approx. 2.495V) and 36V with two external resistors. This device has a typical output impedance of 0.2Ω . Active output circuitry provides a very sharp turn-on characteristic, making this device excellent replacement for zener diodes in many application

FUNCTION BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

(Full Operating Ambient Temperature Range Applies Unless Otherwise Noted)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Cathode Voltage	V_{KA}	40	V
Continuous Cathode Current Range	I _{KA}	-100~+150	mA
Reference Input Current Range	I _{REF}	0.05~10	mA
Junction Temperature	TJ	150	°C
Operating Temperature	Torn	− 20 ~ 85	°C
Storage Temperature	Tsig	-65 ~· 150	°C
Total Power Dissipation	Po	700	mW

ELECTRICAL CHARACTERISTICS

 $(T_a = 25^{\circ}C, V_{KA} = V_{REF}, I_K = 10 \text{mA} \text{ unless otherwise specified})$

Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
Reference Input Voltage	V _{REF}	$V_{KA} = V_{REF}$, $I_K = 10mA$	2,483	2.495	2.507	٧
Deviation of Reference Input Voltage Over Full Temperature Range	V _{REF(dev)}	T _{min} ≤ Ta ≤ T _{max}		3	17	mV
Ratio of Change in Reference Input Voltage to the Change in Cathode Voltage	ΔVπεγ/ΔVκα	$\Delta V_{KA} = 10V - V_{REF}$ $\Delta V_{KA} = 36V - 10V$			2.7 2.0	m∀/V
Reference Input Current	IREF	$R_1 = 10 K\Omega$, $R_2 = \infty$		1.8	4	μА
Deviation of Reference Input Current Over Full Temperature Range	IREF(dev)	$R_1 = 10K\Omega$, $R_2 = \infty$		0.4	1.2	μΑ
Minimum Cathode Current for Regulation	lk(min)			0.25	0.5	mA
Off-State Cathode Current	l _{K(aff)}	$V_{KA} = 40 V$, $V_{REF} = 0$		0.17	0.9	μА
Dynamic Impedance	ZKA	l _k = 10mA to 100 mA , f ≤ 1.0KHz		0.27	0.5	Ω

Fig. 1 Test Circuit for V KA=VREF

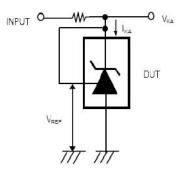


Fig. 2 Test Circuit for V KA≥VREF

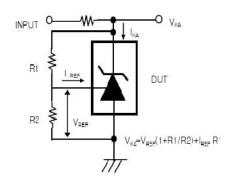
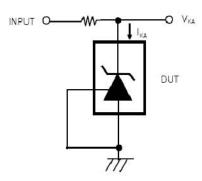



Fig. 3 Test Circuit for IKA (off)

