

2263 DATASHEET

Specification Revision History:

Version	Date	Description	
V1.0	2020/11	New	
V1.1	2021/05	Modify Ordering Information	
V1.2	2023/02	Modify Ordering Information	
V1.3	2024/06	Add application precautions and overall typesetting.	

Description

2263-63M is highly integrated current mode PWM control IC optimized for high performance, low standby power and cost effective offline fly back converter up to 60W output power system.

PWM switching frequency is internally fixed at 65KHz.At no load or light load condition, the IC operates in 'burst mode' to minimize switching dissipation. Therefore, lower standby power dissipation and higher conversion efficiency are achieved.

Due to very small startup current and low operating current, a big resistor can be used in the startup circuit to minimize standby power dissipation.

2263-63M offers comprehensive protection functions, including Cycle-by-Cycle current limitation (OCP), over temperature protection (OTP), Over voltage clamp (OVP) and under voltage lockout (UVLO) on VDD. The Gate output is clamped up to 16V to protect the gate of the power MOSFET

Features

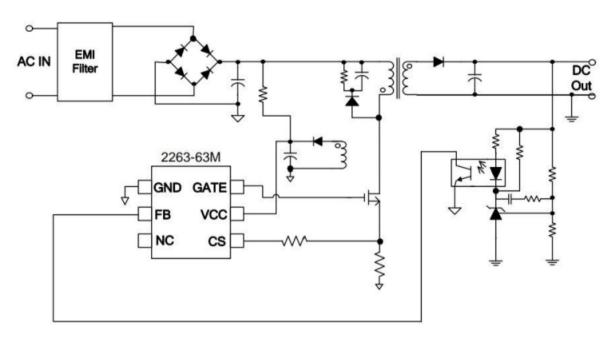
- Digit frequency shuffling technology to improve EMI performance.
- Leading-edge blanking on current sense input.
- Slope compensation.
- Burst mode control to improve efficiency and optimize standby power dissipation.
- Low startup current and low operating current.
- Voltage clamping at gate output
- Soft-start to reduce MOSFET stress during power on.
- Comprehensive protection functions
 - Under voltage locked with hysteresis (UVLO) on VDD
 - Overvoltage protection(OVP)on VDD.
 - 3 Cycle-by-Cycle current limitation
 - 4 、Current limitation compensation to obtain the same output current in universal ac line input
 - 5 、Over load protection(OLP)
 - 6 \ Over temperature protection(OTP)
- 300mA drive capability

Applications

- Cell Phone Charger
- Digital Cameras Charger
- Power adaptor
- Battery charger

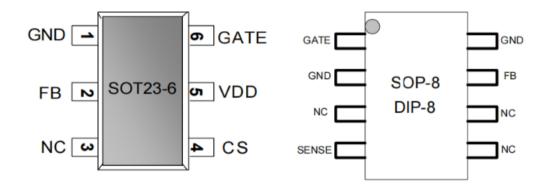
The appearance of the product

SOP-8


SOT-23-6

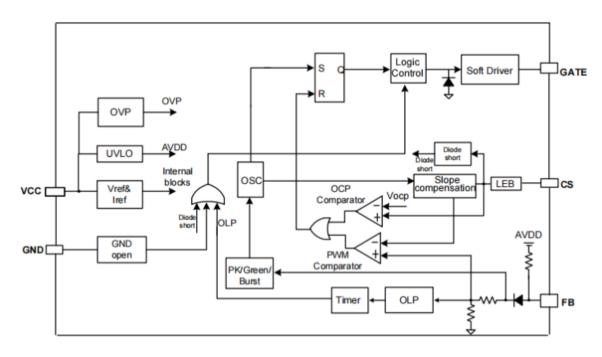
DIP-8

Ordering Information


Product Model	Package Type	Marking	Packing	Packing Qty
GM2263OC	SOT-23-6	2263 B26	REEL	3000PCS/REEL
GM2263DB	DIP-8	2263 226	TUBE	2000PCS/BOX
GM2263SC	SOP-8	2263 226	REEL	2500PCS/REEL
OB2263	SOT-23-6	2263 26	REEL	3000PCS/REEL
OB2263	DIP-8	2263 G226	TUBE	2000PCS/BOX
OB2263	SOP-8	2263 26	REEL	2500PCS/REEL

Application Circuit

Pin Assignment & Marking Information



Pin Description

Symbol	Туре	Description	
GATE	0	Totem-pole gate dive output for the power MOSFET	
VDD	Р	Chip DC power supply pin	
SENSE	I	Current Sense input pin.	
FB	I	Feedback input pin.	
GND	Р	Ground.	

Block Diagram

Absolute Maximum Rating

Parameter	Value	Unit
VDD supply voltage	27	V
VDD clamp voltage	29	V
VDD clamp current	10	mA
VFB input voltage	-0.3 to7	V
VSENSE input voltage to SENSE pin	-0.3 to7	V
Min/Max operating junction temperature	-55 to 150	°C
Operating ambient temperature	-20 to 85	°C
Thermal resistance, Junction to shell SOT23-6	250	°C/W

Note:Stresses above absolute maximum ratings may cause permanents damage to the device. Exposure to absolutely maximum-rated conditions for extended periods may affects device reliability

Recommended Operating Conditions

Symbol	Parameter	Min.Max.	Unit
VDD	Supply Voltage Vcc	9 to 25.5	V
ToA	Operating Ambient Temperature	-20 to 85	°C
ESD-HM	Human Model	2	KV
ESD-MM	Machine Model	150	V

WWW.GREENMICRO.NET 5/12 VER:V1.3

Electrical Characteristics(TA=25°C, if not otherwise noted)

Complete	D	Cardidana	Value			11	
Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
	Supply Voltage(Vaa Pin)						
ldd_startup	VDD start up current	VDD=12.5V		3	15	uA	
ldd	VDD operation current	VDD=16V,FB=3V			2.3	mA	
UVLO(ON)	VDD under voltage lockout enter		6.8	7.8	8.2	V	
UVLO(OFF)	VDD under voltage lockout exit		13	13.4	16.5	V	
VDD_OVP	VDD over voltage protection		25.5		28	V	
	Voltage Fee	dback(FB Pin)					
AVCS	PWM input gain	△VFB/△VSENSE		2		V/V	
VFB_open	VFB open loop voltage			5.7		V	
IFB_short	FB pin short current	Short FB pin to GND and	0.6	0.8	1	mA	
VFB_burst	Burst mode voltage			1.1		V	
VTH_PL	Power limiting FB threshold voltage		2	3.7		V	
TD_PL	Power limiting delay time			120		mS	
DC_MAX	Maximum duty cycle	VDD=18V,FB=2.0V		75		%	
	Current Sens	ing(SENSE Pin)					
T_blanking	Leading-edge blanking time		120	250	750	nS	
ZSENSE_IN	Input impedance			40		ΚΩ	
VTH_sense	Over current thres hold voltage	Duty=0	0.74	0.8	0.86	V	
	Osc	illator					
Fosc	Normal oscillation frequency		62	68.5	75	Khz	
△f_temp	Frequency temperature stability	VDD=16V TA=-20°C to		5		%	
△f_VDD	Frequency voltage stability	VDD=12V to 25V		5		%	
Fosc_BM	Burst mode base frequency		17	20	28	Khz	
△f_0SC	Frequency modulation range/Base		-5		+5	%	
Gate Drive Output							
VOL	Output low level	VDD=16V,IO=-20mA			0.8	V	
VOH	Output high level VDD=16V,IO=20		10			V	
V_Clamp	output clamp voltage level			16		V	
T_r	Output rising time	VDD=16V,CL=1nF		220		nS	
T_f	Output falling time VDD=16V,CL=			70		nS	

Application Information

2263-63Mis a highly integrated PWM controller IC optimized for offline flyback converter up to 60W power system. The burst mode control greatly reduces the standby power consumption and helps the designer easily meet the international energy-saving requirements.

Startup Current and Startup Control

Startup current of 2263-63Mis designed to be very low so that VDD could be charged up above UVLO threshold level quickly. Therefore, a large value resistor can be used to minimize the power dissipation in application. For AC/DC adaptor within universal input range, a $2 \text{ M}\Omega$, 1/2 W resistor could be connected to VDD capacitor to provide a fast startup and low power dissipation solution.

Operating Current

The Operating current of 2263-63M is lower 2.3mA. Therefore, 2263-63M can have a good efficiency.

Frequency shuffling for EMI improvement

The frequency Shuffling is implemented in 2263-63M. The oscilltion frequency is modulated with a random source so that the harmonic energy is spread out. The spread spectrum minimizes the conduction EMI and therefore reduces system design challenge.

Burst Mode Operation

At zero load or light load condition, the main power disipation in a switching mode power supply is from switching on the MOSFET, the transformer core and the snubber circuit. The magnitude of power dissipation is proportional to the number of switching frequency within certain period. Less switching frequency can reduce the power dissipation. 2263-63 Madjusts the switching frequency according to the loading condition. From light load to no load, the FB voltage drops. While the FB voltage is less than 1.1V, the gate pin output is disabled and kept low, while the FB voltage is higher than 1.2V, the gate output recovers to normal working mode. This is called "burst mode". To reduce audio noise, the switching frequency will be kept higher than 20 KHz in burst mode.

Oscillator Operation

The switching frequency is internally fixed at 65kHz.No external frequency setting components are required on PCB design.

WWW.GREENMICRO.NET 7/12 VER:V1.3

Current Sensing and Leading-Edge Blanking

Cycle-by-Cycle current limitation is offered in 2263-63M. The switching current is detected by a resistor into the SENSE pin. An internal leading-edge blanking circuit chops off the SENSE voltage spike at initial so that the external RC filtering on SENSE pin is no longer required. The current limiting comparator is disabled and thus cannot turn off the external MOSFET during the blanking period. PWM duty cycle is determined by the voltage in the SENSE pin and the FB pin.

Internal Synchronized Slope Compensation

Slope compensation circuit adds voltage ramp onto the SENSE voltage according to PWM pulse width This greatly improves the closeloop stability at CCM and prevents the sub-harmonic oscillation and thus reduces the output ripple voltage. Slope compensation can help 2263-63M obtain the same output current in universal ac input voltage

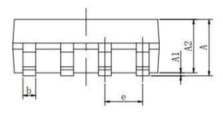
GATE DRIVE

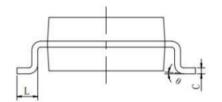
GATE pin of 2263-63M has 300mA drive current capability and the hig hest voltage is clamped at 16V. Therefore, the dissipation of conduction and switching in MOSFET is minimized.

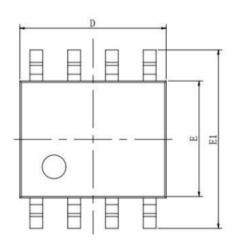
Protection Controls

2263-63Mhas comprehensive protection functions including Cycle-by-Cycle current limitation(OCP),Over Load Protection (OLP) and over voltage clamp, Under Voltage Lockout on VDD(UVLO),Over Temperature Protection(OTP).

Current limitation compensation

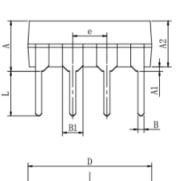

To obtain the same output current capability, the OLP threshold voltage is compensated for the different input AC voltage. This function makes the current of OLP is in consistency whatever the AC input is (110V or 220V).

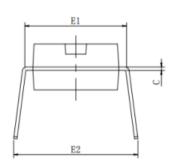

WWW.GREENMICRO.NET 8/12 VER:V1.3

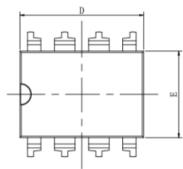


Outline Dimensions

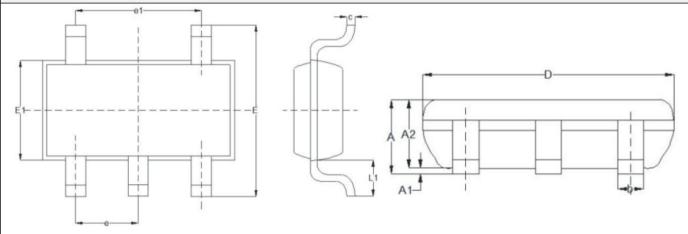
SOP-8 Unit: mm






Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
А	1.350	1.800	0.053	0.071
A1	0.050	0.250	0.004	0.010
A2	1.250	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
С	0.170	0.250	0.006	0.010
D	4.780	5.000	0.185	0.197
Е	3.800	4.000	0.150	0.157
E1	5.800	6.300	0.228	0.244
е	1.270(BSC)		0.050(BSC)	
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°

DIP-8 Unit:mm



Cumbal	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Мах	Min	Max	
А	3.710	4.310	0.146	0.170	
A1	0.510		0.020		
A2	3.200	3.600	0.126	0.142	
В	0.380	0.570	0.015	0.022	
B1	1.524(BSC)		0.060(BSC)		
С	0.204	0.360	0.008	0.014	
D	9.000	9.400	0.354	0.370	
Е	6.200	6.600	0.244	0.260	
E1	7.320	7.920	0.288	0.312	
е	2.540(BSC)		0.10	0(BSC)	
L	3.000	3.600	0.118	0.142	
E2	8.400	9.000	0.331	0.354	

SOT23-5 Unit: mm

Symbol	Min	Тур	Max		
А	1.000		1.250		
A1	0.030		0.090		
A2	1.050		1.150		
С	0.080		0.200		
D		2.900BSC			
Е	2.800BSC				
E1	1.600BSC				
е	0.950BSC				
e1	1.900BSC				
L1	0.600REF				
b	0.300		0.450		

Important Notice:

- Green Micro chip reserves the right to change products and documents without notice.
 Customers should obtain and verify the completeness of the latest technical information before placing orders. Meanwhile, Green Micro chip shall not assume any responsibility or obligation for non-officially revised documents.
- Any parameters in the entire product specification are for reference only, and actual application testing shall prevail. When customers use the products for system design, they must comply with safety regulations and independently assume the following responsibilities: selecting suitable Green Micro chip products according to application requirements; completing design verification and full-link testing of the application; and ensuring that the application complies with safety regulations or other requirements of the target market. Customers shall bear all personal or property losses caused by design defects or illegal operations, which shall have no relation to Green Micro chip.
- Green Micro chip products are prohibited from being used in scenarios such as life support, military equipment, and key aerospace applications. All accidents and legal liabilities arising from out-of-scope use shall be borne by the user, and Green Micro chip shall not be held responsible.
- All technical resources of Green Micro chip (including data sheets and reference designs) are
 provided "as is", without guarantee of no defects or universality, and without any express or
 implied warranties. The documents are only authorized for product development and
 research described in this document. Unauthorized use of intellectual property, public
 reproduction, and reverse engineering are strictly prohibited. All claims and losses caused by
 illegal use shall be borne by the user, and Green Micro chip shall not be liable.

WWW.GREENMICRO.NET 12/12 VER:V1.3