

27L2 DATASHEET

Specification Revision History:

Version	Date	Description
V1.0	2017/08	New
V1.1	2021/05	Modify Ordering Information
V1.2	2023/02	Modify Ordering Information
V1.3	2025/05	Add application precautions and overall typesetting.

DESCRIPTION

The 27L2 (dual) is low cost, rail-to-rail input and output voltage feedback amplifier. It has a wide input common mode voltage range and output voltage swing, and take the minimum operating supply voltage down to 2.1V. The maximum recommended supply voltage is 5.5V. All are specified over the extended -40°C to+125°C temperature range.

The 27L2 provides 150kHz bandwidth at a low current consumption of 5.5µA per amplifier. Very low input bias currents enable the 27L2 to be used for integrators, photodiode amplifiers, and piezoelectric sensors. Rail-to-rail input and output are useful to designers for buffering ASIC in single-supply systems.

Application for this amplifier includes safety monitoring, portable equipment, battery and power supply control, and signal conditioning and interfacing for transducers in very low power systems.

FEATURES

- Low Cost
- Rail-to-Rail Input and Output: 1mV Typical VOS
- Unity Gain Stable
- Gain-Bandwidth Product: 150kHz
- Supply Voltage Range: 2.1V to 5.5V
- Input Voltage Range: -0.1V to +5.6V with V_s = 5.5V
- Low Supply Current: 5.5μA/Amplifier
- Small Packaging

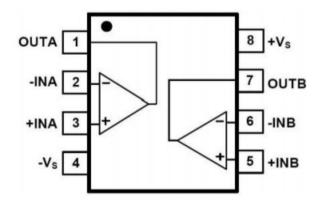
APPLICATIONS

- ASIC Input or Output Amplifier
- Sensor Interface
- Piezoelectric Transducer Amplifier
- Medical Instrumentation
- Mobile Communication
- Audio Output

Portable Systems

- Smoke Detectors
- Mobile Telephone
- Notebook PC
- PCMCIA Cards
- Battery-Powered Equipment

The appearance of the product



SOP-8

Ordering Information

Product Model	Package Type	Marking	Packing	Packing Qty
TLC27L2CBS	SOP-8	27L2 163	REEL	2500PCS/REEL
27L2	SOP-8	27L2 25M	REEL	2500PCS/REEL

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Characteristic		Limit	Unit
Supply volta	nge	6	V
Common mode inp	ut voltage	(-Vs)-0.3∼(+Vs)+0.3	V
Storage temperat	Storage temperature range		°C
Junction temperat	Junction temperature range		°C
Operating tempera	Operating temperature range		°C
Package thermal resist	Package thermal resistance@Ta=25°C		°C/W
Lead temperature(Sol	Lead temperature(Soldering 10sec)		°C
FCD augaantihilitu	НВМ	4000	V
ESD susceptibility	MM	400	

^{*}Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Riso

ELECTRICAL CHARACTERISTICS


 $(TA=25^{\circ}C,Vs=+5V,RL=500k\Omega \text{ connected to Vs/2 and VoUT=Vs/2,unless otherwise specified.})$

	1					1
Characteristic	Symbol	Conditions	Min.	Тур.	Max	Unit
Input offset voltage	V _{os}			1	3.5	mV
Quiescent	Ι _Q			5.5		μΑ
current/amplifier						
Open-Loop	Gν	V_{o} =0.015V to 4.985V, R_{L} =500 k Ω	90	110		dB
voltage gain		V_o =0.1V to 4.9V, R_L =100k Ω	88	108		
Common mode	CMRR	V _s =5.5V,-0.1V <v<sub>CM<5.6V</v<sub>	60	87		dB
rejection ratio		V _s =5.5V,-0.1V <v<sub>CM<4V</v<sub>	70	114		
Power supply	PSRR	V _s =2.5V,-0.1V <v<sub>CM<5.6V</v<sub>	65	94		dB
rejection ratio						
Output current	I _{source}	$R_L=10\Omega$ to $V_s/2$	61	87		mA
	I _{sink}		60	76		
Output voltage	V _{oH}		4.990	4.997		V
swing	V _{oL}			0.005	0.01	
Gain-Bandwidth	GBP			150		kHz
product						
Slew rate	SR	$R_L=100 k\Omega$		0.05		V/µs
Voltage noise		f=1kHz		85		nV/ √HZ
density	e _n	f=10kHz		44		

APPLICATION SUMMARY

a voltage divider with the RLOAD.

Driving Capacitive Loads The 27L2 can directly drive 250pF unity-gain without oscillation. The unity-gain follower (buffer) is the most sensitive configuration to Capacitive loading. Direct capacitive loading reduces the phase margin of amplifiers and this results

oscillation.Applications that require greater capacitive driving capability should use an isolation resistor between the output and the capacitive load like the circuit in Fig1.The isolation resistor R_{Iso} and the load capacitor C_L form a zero to increase stability.The bigger the R_{Iso} resistor value,the more stable V_{out} will be.Note that this method results in a loss of gain accuracy because R_{Iso} forms

An improved circuit is shown in Fig2.It provides DC accuracy as well as AC stability.RF provides the DC accuracy by connecting the inverting signal with the output.CF and R_{Iso} serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop.

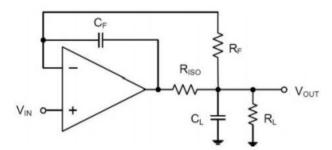


Fig2.Indirectly Driving Heavy Capacitive Load with DC Accuracy

For non-buffer configuration, there are two other ways to increase the phase margin: (a) by increasing the amplifier's gain or (b) by placing a capacitor in parallel with the feedback resistor to counteract the parasitic capacitance associated with inverting node.

Power-Supply Bypassing and Layout

The 27L2 operates from either a single +2.1V to+5.5V supply or dual ± 1.05 V to ± 2.75 V supplies. For single-supply operation, by pass the power supply +Vs with a 0.1μ F ceramic capacitor which should be placed close to the+Vs pin. For dual-supply operation, both the +Vs and the-Vs supplies should be by passed to ground with separate 0.1μ F ceramic

capacitors.2.2µF tantalum capacitor can be added for better performance.

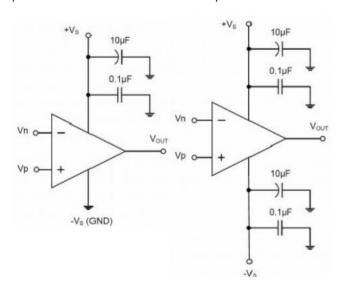


Fig3.Amplifier with Bypass Capacitors

Differential Amplifier

The circuit shown in Fig4 performs the difference function. If the resistor ratios are equal to (R4/R3=R2/R1), then

 $V_{OUT} = (V_p - V_n) \times R2/R1 + V_{REF}$.

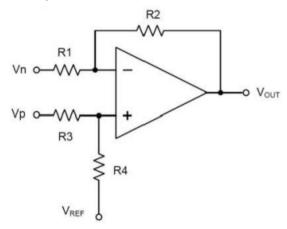


Fig4.Differential Amplifier

Instrumentation Amplifier

The circuit in Fig5 performs the same function as that in Fig4 but with a high input impedance.

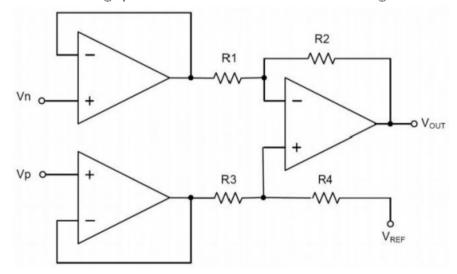
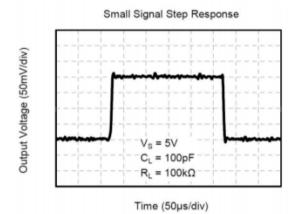


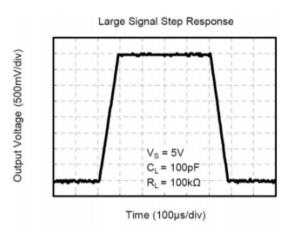
Fig5.Instrumentation Amplifier

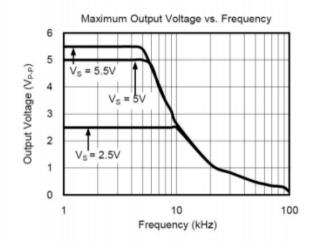
Low Pass Active Filter

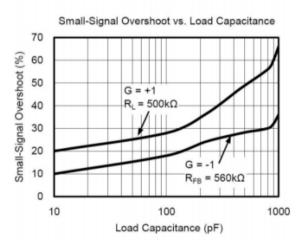
The low pass filter shown in Fig6 has a DC gain of (-R2/R1) and the -3dB corner frequency is $1/2\pi R_2$ C. Make sure the filter bandwidth is within the bandwidth of the amplifier. The large values of feedback resistors can couple with parasitic capacitance and cause undesired

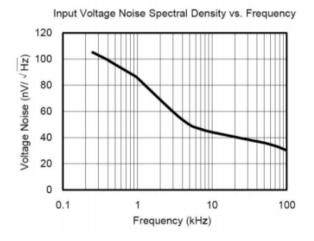
effects such as ringing or oscillation in high-speed amplifiers. Keep resistor values as low as possible and consistent with output loading consideration.

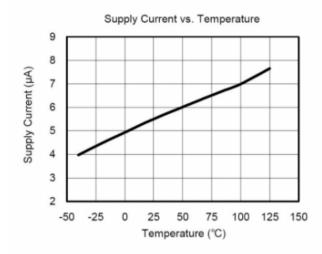



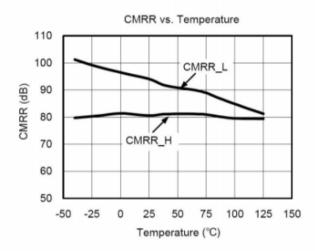

Fig6.Low Pass Active Filter

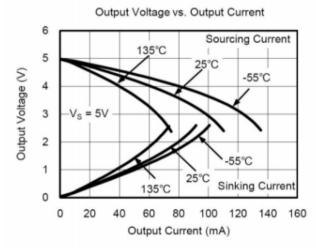

CHARACTERISTICS CURVES

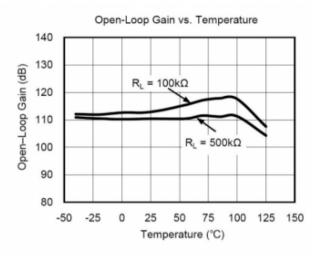

 $A_T T_A = +25^{\circ}C$, $V_S = +5V$ and $R_L = 500$ k Ω connected to $V_S/2$, unless otherwise noted.

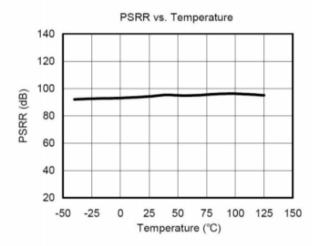


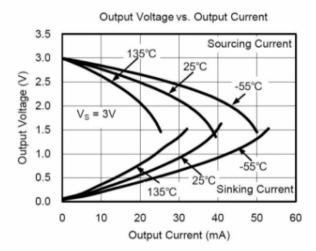


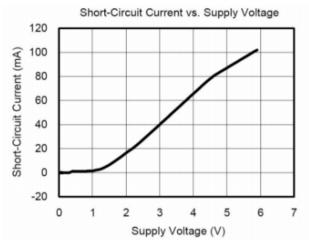


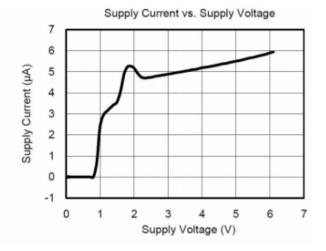


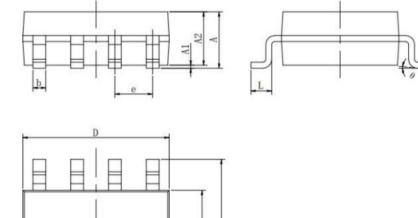












Outline Dimensions

SOP-8 Unit: mm

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
А	1.350	1.800	0.053	0.071	
A1	0.050	0.250	0.004	0.010	
A2	1.250	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.780	5.000	0.185	0.197	
Е	3.800	4.000	0.150	0.157	
E1	5.800	6.300	0.228	0.244	
е	1.270(BSC)		0.050(BSC)		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

Important Notice

- Green Micro chip reserves the right to change products and documents without notice.
 Customers should obtain and verify the completeness of the latest technical information before placing orders. Meanwhile, Green Micro chip shall not assume any responsibility or obligation for non-officially revised documents.
- Any parameters in the entire product specification are for reference only, and actual application testing shall prevail. When customers use the products for system design, they must comply with safety regulations and independently assume the following responsibilities: selecting suitable Green Micro chip products according to application requirements; completing design verification and full-link testing of the application; and ensuring that the application complies with safety regulations or other requirements of the target market. Customers shall bear all personal or property losses caused by design defects or illegal operations, which shall have no relation to Green Micro chip.
- Green Micro chip products are prohibited from being used in scenarios such as life support, military equipment, and key aerospace applications. All accidents and legal liabilities arising from out-of-scope use shall be borne by the user, and Green Micro chip shall not be held responsible.
- All technical resources of Green Micro chip (including data sheets and reference designs) are
 provided "as is", without guarantee of no defects or universality, and without any express or
 implied warranties. The documents are only authorized for product development and
 research described in this document. Unauthorized use of intellectual property, public
 reproduction, and reverse engineering are strictly prohibited. All claims and losses caused by
 illegal use shall be borne by the user, and Green Micro chip shall not be liable.

WWW.GREENMICRO.NET 13/13 VER:V1.3