

TDA2030 产品说明书

Specification Revision History:

Version	Date	Description
V1.0	2019/04	New
V1.1	2021/03	Modify Ordering Information
V1.2	2025/02	Modify Ordering Information
V1.3	2025/03	Add application precautions and
		overall typesetting.

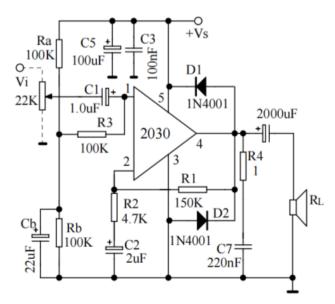
GENERAL DESCRIPTION

The TDA2030 is a monolithic integrated circuit in Pentawatt package, intended for use as a low frequency class AB amplifier. Typically it provides 18W output power(d=0.5%) at±18V or 36V,

The TDA2030 provides high output current and has very low harmonic and cross-over distortion.

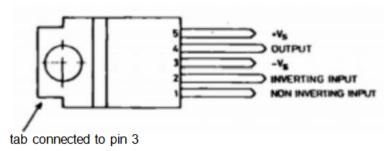
Further the device incorporates an original (and patented) short circuit protection system comprising an arrangement for automatically limiting the dissipated power so as to keep the working point of the output transistors within their safe operating area. A conventional thermal shut-down system is also included.

The appearance of the product



TO-220-5

Ordering Information


Product Model	Package Type	Marking	Packing	Packing Qty
TDA2030A(GMIC)	TO-220-5	TDA2030 251	TUBE	1000PCS/BOX
TDA2030(GMIC)	TO-220-5	TDA2030 0251	TUBE	1000PCS/BOX

TYPICAL APPLICATION

PIN CONNECTION

ABSOLUTE MAXIMUM RATINGS(Ta=25°°C)

Characteristics	Symbol	Value	Units
Supply Voltage	Vs	±18	V
Input Voltage	Vi	Vs	V
Differential input Voltage	Vdi	±15	V
Peak output Current (Internally limited)	lo	3.5	А
Power Dissipation at Tcase=90°C	Ptot	20	W
Storage Temperature	Tstg	-40~+150	°C
Junction Temperature	Tj	-40~+150	°C

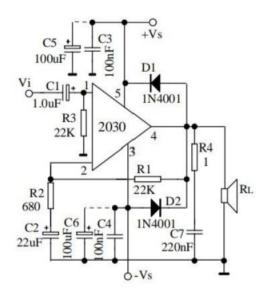
THERMAL DATA

Characteristics	Symbol	Value	Units
Thermal Resistance Junction-case Max	Rth(j-case)	3	C/W

ELECTRICAL CHARACTERISTICS

(Refer to the test circuit, Vs=±16V, Ta=25°C, unless otherwise specified)

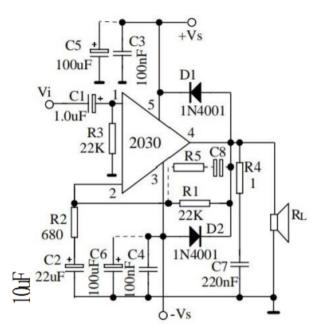
Characteristics	Test conditions	Symbol	Min	Тур	Max	Unit
Supply Voltage		Vs	±6		±18	٧
			12		36	
Quiescent Drain Current		Id		40	60	mA
Input Bias Current		lb		0.2	2	μΑ
Input Offset Voltage	Vs=±18V(Vs=36V)	Vos		±2	±20	mΑ
Input Offset Current		los		±20	±200	nA

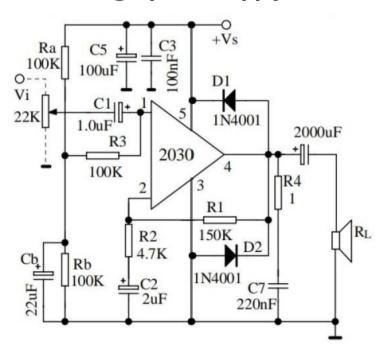


ELECTRICAL CHARACTERISTICS

Continue

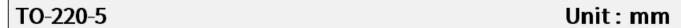
Characteristics	Test conditions		Symbol	Min	Тур	Max	Unit
	THD=0.5%,Gv=30dB, f=40 to	RL=4Ω		12	15		
	15000Hz	RL=8Ω		8	10		
Output Power Vs=±18V	THD=10%,	RL=4Ω	Ро		18		W
	Gv=30dB,f=1kHz	RL=8Ω]		12		
Power Bandwidth	Po=12W,R _L =4Ω,Gv=30)dB	BW	10~140000		kHz	
open Loop Voltage			Gv		90		dB
Gain							
Closed Loop Voltage	f=1kHz		Gv	29.5	30	30.5	dB
Gain							
Total Harmonic	Po=0.1 to 12W,R _L =4 Ω ,				0.2	0.5	
Distortion	Gv=30dB,f=40 to 15000kHz		THD				%
	Po=0.1 to 8W R _L =8Ω				0.1	0.5	
	Gv=30dB,f=40 to 15000)kHz					
Input Noise Voltage	B=22Hz to 22kHz		e _N		3	10	μV
Input Noise Current			İ _N		80	200	pА
Input Resistance(pin1)			Ri	0.5	5		МΩ
Supply Voltage Rejection	RL=4Ω,Rg=22kΩ,Gv=30dB,		SVR	40	50		dB
	Vripple=0.5Veff,fripple=100Hz						
D rain current	Po=14W,R _L =4Ω		ld		900		mΑ
Po=8W,R _L =8 Ω					500		

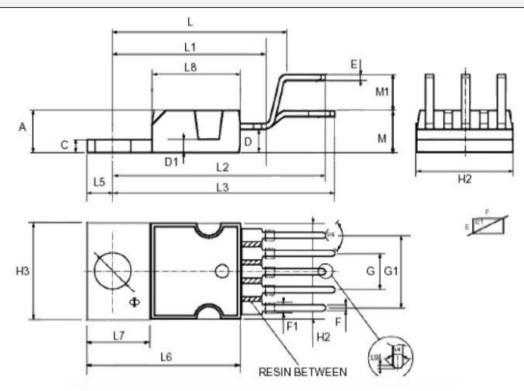

TEST CIRCUIT



APPLICATION CIRCUIT

1. Typical amplifier with split power supply




2. Typical amplifier with single power supply

Outline Dimensions

Symbol		mm				
	MIN	TYP	MAX			
А	4.2		4.8			
С	1.2		1.37			
D	2.4		2.8			
D1	1.2		1.35			
E	0.35		0.55			
E1	0.76		1.19			
F	0.8		1.05			
F1	1		1.4			
G	3.2	3.4	3.6			
G1	6.6	6.8	7			
H2	10		10.4			
H3	10.05		10.4			
L	17.55	17.85	18.15			
L1	15.55	15.75	15.95			
L2	21.2	21.4	21.6			
L3	22.3	22.5	22.7			
L5	2.6		3			
L6	15.1		15.8			
L7	5.6		6.2			
L8	9.2		9.4			
L9		0.2				
M	4.23	4.5	4.75			
M1	3.75	4	4.25			
Φ	3.8		3.9			
V4	40°(typ)					

Important Notice:

- Green Micro chip reserves the right to change products and documents without notice. Customers should obtain and verify the completeness of the latest technical information before placing orders.
 Meanwhile, Green Micro chip shall not assume any responsibility or obligation for non-officially revised documents.
- Any parameters in the entire product specification are for reference only, and actual application testing shall prevail. When customers use the products for system design, they must comply with safety regulations and independently assume the following responsibilities: selecting suitable Green Micro chip products according to application requirements; completing design verification and full-link testing of the application; and ensuring that the application complies with safety regulations or other requirements of the target market. Customers shall bear all personal or property losses caused by design defects or illegal operations, which shall have no relation to Green Micro chip.
- Green Micro chip products are prohibited from being used in scenarios such as life support, military
 equipment, and key aerospace applications. All accidents and legal liabilities arising from out-of-scope
 use shall be borne by the user, and Green Micro chip shall not be held responsible.
- All technical resources of Green Micro chip (including data sheets and reference designs) are provided
 "as is", without guarantee of no defects or universality, and without any express or implied warranties.
 The documents are only authorized for product development and research described in this document.
 Unauthorized use of intellectual property, public reproduction, and reverse engineering are strictly
 prohibited. All claims and losses caused by illegal use shall be borne by the user, and Green Micro chip
 shall not be liable.

WWW.GREENMICRO.NET 7/7 VER:V1.3